AMPA receptor-mediated, calcium-dependent CREB phosphorylation in a subpopulation of auditory neurons surviving activity deprivation.
نویسندگان
چکیده
Although dependence on afferent synaptic activity has been shown for central neurons in every sensory system, the mechanisms of afferent maintenance of target sensory neurons are not understood. Neurons in the cochlear nucleus (CN) require afferent activity for maintenance and survival. One of the earliest changes seen after activity deprivation is an increase in intracellular calcium that leads to the death of 30% of the neuronal population. Sixty minutes after deafferentation, the surviving neurons show increased phosphorylation of the transcription factor calcium/cAMP response element-binding protein (CREB). CREB phosphorylation in activity-deprived CN neurons is dependent on increased intracellular calcium resulting from influx through AMPA receptors and is mediated by calcium/calmodulin-dependent kinases and protein kinase A. We conclude that in CN neurons, the deafferentation-induced increase in calcium activates at least two kinase pathways that phosphorylate CREB in surviving neurons. We hypothesize that this phosphorylation results in the transcription of genes containing the calcium/cAMP response element within their promoter regions, and these genes code for proteins that allow the neurons to compensate for their hypercalcemic, activity-deprived state.
منابع مشابه
Calcineurin Mediates Synaptic Scaling Via Synaptic Trafficking of Ca2+-Permeable AMPA Receptors
Homeostatic synaptic plasticity is a negative-feedback mechanism for compensating excessive excitation or inhibition of neuronal activity. When neuronal activity is chronically suppressed, neurons increase synaptic strength across all affected synapses via synaptic scaling. One mechanism for this change is alteration of synaptic AMPA receptor (AMPAR) accumulation. Although decreased intracellul...
متن کاملGlutamate cascade to cAMP response element-binding protein phosphorylation in cultured striatal neurons through calcium-coupled group I metabotropic glutamate receptors.
Emerging evidence indicates that group I metabotropic glutamate receptors (mGluRs) play a significant role in the addictive plasticity of striatal neurons. The plasticity is probably mediated by altered cellular gene expression in relation to stimulation of group I mGluRs and associative signaling proteins. In this study, we investigated the signaling linkage of surface group I mGluRs to the nu...
متن کاملNMDA receptor mediated dendritic plasticity in cortical cultures after oxygen-glucose deprivation.
Dendrites and spines undergo dynamic changes in physiological and pathological conditions. Dendritic outgrowth has been observed in surviving neurons months after ischemia, which is associated with the functional compensation. It remains unclear how dendrites in surviving neurons are altered shortly after ischemia, which might reveal the mechanisms underlying neuronal survival. Using primary co...
متن کاملL-Type Ca(2+) channels are essential for glutamate-mediated CREB phosphorylation and c-fos gene expression in striatal neurons.
The second messenger pathways linking receptor activation at the membrane to changes in the nucleus are just beginning to be unraveled in neurons. The work presented here attempts to identify in striatal neurons the pathways that mediate cAMP response element-binding protein (CREB) phosphorylation and gene expression in response to NMDA receptor activation. We investigated the phosphorylation o...
متن کاملRapid Dispersion of SynGAP from Synaptic Spines Triggers AMPA Receptor Insertion and Spine Enlargement during LTP
SynGAP is a Ras-GTPase activating protein highly enriched at excitatory synapses in the brain. Previous studies have shown that CaMKII and the RAS-ERK pathway are critical for several forms of synaptic plasticity including LTP. NMDA receptor-dependent calcium influx has been shown to regulate the RAS-ERK pathway and downstream events that result in AMPA receptor synaptic accumulation, spine enl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 20 16 شماره
صفحات -
تاریخ انتشار 2000